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wonderful person

Abstract. In this work the differentiability of the principal eigen-
value λ = λ1(Γ) to the localized Steklov problem −Δu+ qu = 0 in
Ω, ∂u

∂ν = λχΓ(x)u on ∂Ω, where Γ ⊂ ∂Ω is a smooth subdomain of
∂Ω and χΓ is its characteristic function relative to ∂Ω, is shown.
As a key point, the flux subdomain Γ is regarded here as the vari-
able with respect to which such differentiation is performed. An
explicit formula for the derivative of λ1(Γ) with respect to Γ is
obtained. The lack of regularity up to the boundary of the first
derivative of the principal eigenfunctions is a further intrinsic fea-
ture of the problem. Therefore, the whole analysis must be done in
the weak sense of H1(Ω). The study is of interest in mathematical
models in morphogenesis.

1. Introduction

In this work we are analyzing the flux-type linear eigenvalue problem,

(1.1)

⎧⎪⎨
⎪⎩
−Δu+ q(x)u = 0 x ∈ Ω

∂u

∂ν
= λχΓ(x)u x ∈ ∂Ω,

where Ω ⊂ RN is a class C3 bounded domain with boundary ∂Ω and
outer unit normal field ν = ν(x). As an important feature to be pointed
out, the weight function χΓ(x) in front of λ is the characteristic function
of a region Γ in ∂Ω (χΓ = 1 if x ∈ Γ, χΓ = 0 for x ∈ ∂Ω\Γ). Throughout
this work, it will be always assumed that Γ is a subdomain (an open
connected set) so that Γ = Γ∪∂Γ defines a class C3 closed submanifold
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of ∂Ω with boundary ∂Γ. We will refer to this requirement of the flux
region Γ in the sequel by saying that Γ is a smooth subdomain of ∂Ω. In
addition, the potential term q will be supposed C1 up to the boundary,
i. e. q ∈ C1(Ω).

The main objective of this paper is to show that the principal eigen-
value to problem (1.1) varies in a smooth way when the flow region Γ is
“tangentially” deformed according to a broad class of regular perturba-
tions (see (4.1) and Section 3 for precise definitions). Furthermore, an
explicit formula for the variation of such eigenvalue with respect to Γ
is obtained (Section 4, Theorem 4.2 and Section 5, Theorem 5.1). Ac-
cordingly, the perturbation problem addressed here falls in the realm
of “variation of domains”, a field with long tradition in the theory of
linear and nonlinear eigenvalue problems (see the specific monography
[13] on the subject, [19] and [16] together with its references).

Problem (1.1) can be observed as a Steklov problem where the flux
through the boundary is restricted, by means of the weight function
χΓ, to a specific zone Γ of ∂Ω (see [4] and [11] for related Steklov
problems). Our main interest will be focused on principal eigenvalues.
By a principal eigenvalue to (1.1) it is understood an eigenvalue λ with
a positive associated eigenfunction Φ (see Section 2). Indeed, it can be
shown that (1.1) admits an eigenvalue exhibiting that property if and
only if the first eigenvalue of −Δ + q(x) under Dirichlet conditions on
Γ and Neumann conditions on ∂Ω \Γ is positive. Moreover, there only
exists a unique principal eigenvalue λ1 (Section 2).

The principal eigenvalue plays a crucial role when one deals with nat-
ural perturbations of (1.1) and the interest is put in positive solutions.
Specifically, consider the problem,

(1.2)

⎧⎪⎨
⎪⎩
−Δu+ q(x)u = f(x, u) x ∈ Ω

∂u

∂ν
= χΓ(x)(λu+ g(x, u)) x ∈ ∂Ω,

where f : Ω×R→ R and g : ∂Ω×R→ R define certain volumetric and
surface reaction terms, respectively. Assume that f(x, u) = uf1(x, u),
g(x, u) = ug1(x, u) with both f1 and g1 continuously differentiable and
satisfying f1(x, 0) = g1(x, 0) = 0 in Ω. Then problem (1.2) can be
regarded as a model for a chemical reactor Ω where the species u is
consumed in a rate −q + f1 meanwhile it is pumped into the reactor
with a flux-intensity λ through the window Γ in the boundary ∂Ω (see
[12] for related ideas). In fact, a positive solution u to (1.2) –if such a
solution exists– provides the equilibrium regime of production for such
a substance u. In other words, a positive stationary solution to the
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reaction-diffusion equation,

(1.3)

⎧⎪⎨
⎪⎩
∂u

∂t
= Δu− q(x)u+ f(x, u) x ∈ Ω, t > 0

∂u

∂ν
= χΓ(x)(λu+ g(x, u)) x ∈ ∂Ω.

Suppose now that both f1 and g1 are decreasing. A simple computation
reveals that a necessary condition for the existence of such a positive
solution is that the intensity λ be greater than λ1. Furthermore, λ > λ1

turns out to be also a sufficient condition for the existence of a unique
positive equilibrium provided f1(x, u) → −∞, g1(x, u) → −∞ as u →
∞ (see [11] for precise details together with further configurations for
the reaction terms f and g). This means that the system requires a
large enough flux intensity λ through the “localized zone” Γ, to sustain
a stable regime. The critical value of λ is just provided by λ1. On the
other hand, λ = λ1 constitutes a bifurcation value, either from zero or
infinity, for positive solutions of (1.2) if suitable structure conditions
are satisfied by the nonlinearities f and g (see [4, 5] and complementary
multiplicity results in [6]).

In [10] authors presented a reaction-diffusion model for patterning of
limb cartilage development, a paramount problem in embryology ([17]).
They considered a growing domain modeling the limb bud (the reactor
Ω), and developed a numerical scheme that incorporated the interac-
tions between two distinguished reactants u1, u2 located in very specific
zones Γ1, Γ2 of the boundary ∂Ω. The relevance of such substances
ui (called morphogens) and the prominent role of the flux regions Γi
has been largely supported by a strong experimental evidence ([18],
[22]). Experiments also suggests that the pattern-formation seems to
be driven by the mutual regulation of the fluxes of ui through the zones
Γi.

Inspired in [10] the present work analyzes the phenomenology of the
flux zones from an alternative point of view. Since λ1 measures the
threshold value of λ in order that (1.2) exhibits a positive solution, a
special emphasis should be put on how does λ1 varies with Γ. Therefore,
the “size” of the region Γ ⊂ ∂Ω will be regarded here as a parameter in
the sense that the whole of Γ will be subject to tangential deformations.
Our main purpose will be then to study the corresponding variations
of λ1, as direct response to such perturbation.

As already mentioned, the existence of a principal eigenvalue to (1.1)
is characterized for the positivity of the first eigenvalue of an auxiliary
mixed problem for the operator −Δ + q (see Theorem 2.1). It should
be also stressed that in order that (1.1) generates a “genuine” pertur-
bation problem when the subdomain Γ is varied, it is required that
λN1 (q) �= 0, λN1 (q) being the first Neumann eigenvalue of −Δ + q in
Ω. Otherwise, the principal eigenvalue λ1 to (1.1) stays equal to zero



4 R. PARDO, A. L. PEREIRA AND J. SABINA

for all subdomains Γ ⊂ ∂Ω and the perturbation problem becomes
degenerate (Section 2, Remarks 2.3 c) and 2.5 a)).

Another key feature of problem (1.1) is the lack of regularity exhib-
ited by the eigenfunctions associated to the principal eigenvalue λ1.
In fact, such eigenfunctions fails to be of class C1 up to the bound-
ary (Section 2, Theorem 2.1). This singular behavior is caused by
the discontinuity of the coefficient χΓ through the interphase ∂Γ (the
boundary of ∂Γ in ∂Ω). As a direct consequence of this fact, the full
analysis of existence of a principal eigenvalue to (1.1), and its properties
of continuity and differentiability with respect Γ must be necessarily
performed in the “weak” framework of H1(Ω).

The present work is organized as follows. Section 2 is devoted to
a complete study of the principal eigenvalue to (1.1) which covers
existence conditions, uniqueness, simplicity and regularity of eigen-
functions (Theorem 2.1). Monotone and continuous dependence with
respect to weak perturbations of the subdomain Γ are also studied
(Lemma 2.4 and Lemma 2.7). In addition, a Fredholm alternative re-
sult for λ1, which is necessary for the analysis in Section 4, is directly
shown by following a variational approach (Theorem 2.9). Section 3
lays down the class of smooth perturbations of Γ under which the
smoothness of λ1 is studied. It also contains the relevant calculus fea-
tures required for our purposes. Finally, the main results of the work
are contained in Sections 4 and 5. Namely, the differentiability of λ1

with respect to Γ (Theorem 4.1) and an explicit integral formula for
its derivative (Theorems 4.2 and 5.1).

2. The localized Steklov eigenvalue problem

We are beginning the section with a detailed analysis on the issues
of existence and uniqueness of a principal eigenvalue to (1.1) together
with the smoothness of the corresponding associated eigenfunctions.

For the sake of completeness we are first considering a slightly more
general problem than (1.1). Namely,

(2.1)

⎧⎨
⎩
−Δu+ q(x)u = 0 x ∈ Ω

∂u

∂ν
= λm(x)u x ∈ ∂Ω,

where the coefficient m ∈ L∞(Γ), m = 0 in ∂Ω \ Γ and m > 0 almost
everywhere in Γ. An eigenvalue λ ∈ R to (2.1) with an associated
(weak) eigenfunction Φ ∈ H1(Ω), Φ �= 0, is defined through the equality

(2.2)

∫
Ω

∇Φ∇ϕ + qΦϕ = λ

∫
Γ

mΦϕ,

which must be satisfied for every ϕ ∈ H1(Ω).
A first result is the following.
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Theorem 2.1. Assume that m ∈ L∞(∂Ω) is a nonnegative function
supported on Γ, supp m = Γ. Then, a necessary and sufficient condi-
tion for the existence of a principal eigenvalue to (2.1) is

(2.3) μ1 > 0,

where μ = μ1 is the principal eigenvalue of the mixed problem,

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δφ+ qφ = μφ x ∈ Ω,

φ = 0 x ∈ Γ,

∂φ

∂ν
= 0 x ∈ ∂Ω \ Γ.

Moreover, if (2.3) holds,

i) Problem (2.1) possesses a minimum eigenvalue λ1 which is sim-
ple and it is the only one with a positive eigenfunction Φ1 ∈
H1(Ω), i. e., it is the unique principal eigenvalue to (2.1).

ii) The sign of λ1 coincides with the sign of the first Neumann
eigenvalue of −Δ + q in Ω. In particular, λ1 = 0 if such eigen-
value is zero.

iii) If Φ1 ∈ H1(Ω) is any eigenfunction associated to λ1 then Φ1 ∈
C2,α(Ω)∩L∞(Ω). Moreover, Φ1 ∈ Cβ(Ω) for certain 0 < β < 1.
In addition, if m ∈ C1,α(∂Ω) then Φ1 ∈ C2,α(Ω).

iv) For the special choice m = χΓ and Φ1 as in iii), Φ1 ∈ C2,α(Ω∪
K) for every compact K ⊂ ∂Ω, K ∩ ∂Γ = ∅. Furthermore, Φ1

cannot be continuously differentiable up to the boundary ∂Ω.
v) If Φ1 ∈ H1(Ω) is a nonnegative principal eigenfunction to (2.1)

then Φ1 > 0 in Ω, in particular on the boundary ∂Γ of Γ as a
manifold with boundary.

Definition 2.2. Assuming that condition (2.3) holds, the principal
eigenvalue to problem (1.1) will be denoted either as λ1 or λ1(Γ) if
it is necessary to emphasize the dependence of λ1 on Γ. Likewise,
Φ1 ∈ H1(Ω) will designates the positive corresponding eigenfunction
such that

∫
Γ

Φ2
1 = 1.

Remark 2.3.
a) Theorem 2.1 remains valid if Γ is merely a relative open subdomain
of ∂Ω rather than a smooth subdomain of ∂Ω (i. e. Γ is a submanifold
of ∂Ω with boundary).

b) From the variational characterization of μ1 it follows that

(2.5) λN1 (q) < μ1 < λD1 (q),

for all Γ ⊂ ∂Ω, Γ �= ∂Ω, where λN1 (q) and λD1 (q) stand for the principal
eigenvalues of −Δ+q under Neumann or Dirichlet boundary conditions
in Ω, respectively. It is a consequence of Theorem 2.1 and (2.5) that

λD1 (q) > 0
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becomes a necessary condition for the existence of a principal eigenvalue
λ1 to (1.1). It also provides the existence of λ1 at least for certain
subdomains Γ (see also Remarks 2.5).

c) A crucial consequence of ii) in Theorem 2.1 is the fact that condition
λN1 (q) �= 0 is required in order that our problem of perturbing λ1 with
respect to Γ be a nontrivial problem (otherwise λ1(Γ) vanishes for all
subdomains Γ of ∂Ω).

Proof of Theorem 2.1. The fact that (2.4) possesses a unique principal
eigenvalue μ = μ1 is essentially well-known and can be proved by direct
methods in the calculus of variations. Moreover, μ1 is unique as a
principal eigenvalue and can be variationally expressed as

(2.6) μ1 := inf
H1

Γ(Ω)

∫
Ω
|∇u|2 + qu2∫

Ω
u2

,

where H1
Γ(Ω) := {u ∈ H1(Ω) : u|Γ = 0}.

Let us assume μ1 > 0. We are going to show the existence and
remaining properties of a principal eigenvalue to (2.1) by proving that

inf
u∈H1(Ω)

∫
Ω
|∇u|2 + qu2∫

Γ
mu2

> −∞,

and that such infimum is achieved at some Φ1 ∈ H1(Ω). In fact, the
functional

J(u) :=

∫
Ω

|∇u|2 + qu2

is sequentially weakly lower semicontinuous in H1(Ω) and we claim
that J is also coercive on

(2.7) M :=

{
u ∈ H1(Ω) :

∫
Γ

mu2 = 1

}

provided μ1 > 0. Therefore, a standard approach in the calculus of
variations ([20]) shows the existence of Φ1 ∈ M such that

J(Φ1) = inf
u∈M

J(u) := λ1.

It is clear that

(2.8) λ1 = inf
u∈H1(Ω)

∫
Ω
|∇u|2 + qu2∫

Γ
mu2

.

To prove the claim, let us consider a sequence un ∈ M such that
‖un‖H1(Ω) → ∞. Then J(un) cannot be bounded. Assume on the
contrary that it is bounded, then by setting un = tnvn with tn =
‖un‖H1(Ω) we obtain

(2.9)

∫
Ω

|∇vn|2 + qv2
n = O

(
1

t2n

)
.
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Since, modulus a subsequence, vn ⇀ v weakly in H1(Ω) then vn → v

both in L2(Ω) and L2(∂Ω). However,
∫

Γ
mv2

n =
1

t2n
and so v ∈ H1

Γ(Ω).

By taking ‘lim-inf’ in the previous expression for J(vn) it follows that
J(v) ≤ 0. Condition μ1 > 0 implies that v = 0 and we deduce∫

Ω
|∇vn|2 = o(1). Thus vn → 0 in H1(Ω) which contradicts ‖vn‖H1(Ω) =

1 for all n. Hence, J is coercive.

On the other hand, it is clear that any Φ ∈ M such that J(Φ) = λ1

defines a weak eigenfunction associated to λ1 in the sense of (2.2), and
so λ1 is an eigenvalue. Additionally, from (2.2), any other possible
eigenfunction Φ̃ associated to λ1 satisfies∫

Ω

|∇Φ̃|2 + qΦ̃2 = λ1

∫
Γ

mΦ̃2.

Since μ1 > 0 then Φ̃ �= 0 on Γ. Otherwise, being Φ̃ ∈ H1
Γ(Ω), the

variational expression of μ1 yields

λ1

∫
Γ

mΦ̃2 ≥ μ1

∫
Ω

Φ̃2

and Φ̃ would vanish in the whole of Ω. Thus, we get

(2.10) λ1 =

∫
Ω
|∇Φ̃|2 + qΦ̃2∫

Γ
mΦ̃2

.

To show that λ1 defines a principal eigenvalue notice that if Φ is an
eigenfunction associated to λ1 then Φ̃ = |Φ| also satisfies (2.10). Hence
|Φ| ∈ H1(Ω)+ defines an eigenfunction. In addition, the regularity
theory for elliptic equations implies that |Φ| ∈ C2,α(Ω) which, together
with the maximum principle yields |Φ(x)| > 0 in Ω.

We next show the simplicity of λ1. It suffices with proving that any
eigenfunction Φ associated to λ1 is one signed. Assume that, say, Φ+ �=
0 on Γ then, by inserting ϕ = Φ+ as a test function in the equation
(2.2) for Φ we obtain that Φ+ also satisfies (2.10) with Φ̃ = Φ+. This
means that Φ+ is an eigenfunction and, as already shown, Φ+(x) > 0
in Ω what says that Φ− = 0. Therefore, Φ is one signed.

The uniqueness of λ1 as a principal eigenvalue is a consequence of the
fact that Φ �= 0 on Γ for any other eigenfunction Φ associated to any
eigenvalue λ to (2.1). If λ �= λ1 and Φ1 is an eigenfunction associated
to λ1 one easily finds ∫

Γ

ΦΦ1 = 0.

This is impossible if Φ �= 0 is nonnegative. Observe in addition that
the own expression (2.8) entails the minimality of λ1 as an eigenvalue
of (2.1).
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Let us consider now the regularity issues. If Φ ∈ H1(Ω) is any (not
necessarily principal) eigenfunction to (2.1) then Lemma 5 in [11] (see
also [3]) allows us ensuring that Φ ∈ L∞(Ω). Moreover, the existence
of β ∈ (0, 1) such that Φ ∈ Cβ(Ω) follows from Lemma B.1 in [3]. That
Φ ∈ C2,β(Ω∪K) for any compact K ⊂ ∂Ω \ ∂Γ for every m supported
in Γ provided m ∈ C1,α(Γ) follows from classical regularity theory ([2]).
Of course, Φ ∈ C2,α(Ω) if m ∈ C1,β(∂Ω) for β ≥ α.

However, when m(x) = χΓ(x) –which is just our main concern in
this work– a principal eigenfunction Φ1 cannot be continuously differ-
entiable up to the boundary. In fact, supposing Φ1 > 0 in Ω then Φ1

must be positive on ∂Ω \ ∂Γ. If Φ1 ∈ C1(Ω) then
∂Φ1

∂ν
should be zero

at ∂Γ and the same should be true for Φ1. But this contradicts Hopf’s
maximum principle and so the normal derivative cannot be continu-
ous through ∂Γ. Moreover, we are showing below that Φ1 > 0 on ∂Γ.

Hence
∂Φ1

∂ν
undergoes a jump discontinuity across ∂Γ.

In conclusion, we have completed the proofs of i), iii) and iv).

To show the necessity of (2.3), let us introduce the auxiliary eigen-
value problem

(2.11)

⎧⎨
⎩
−Δφ+ qφ = θφ x ∈ Ω

∂φ

∂ν
= λm(x)φ x ∈ ∂Ω,

with m ∈ L∞(∂Ω)+, supported on Γ. In [11] it has been shown the
existence, for each λ ∈ R, of a unique principal eigenvalue θ = θ(λ)
to (2.11), with a nonnegative associated eigenfunction φ ∈ H1(Ω).
Furthermore it was proved that function θ(λ) is concave, decreasing
and that limλ→∞ θ(λ) = −∞. In addition, we claim that

lim
λ→−∞

θ(λ) = μ1.

Then, if λ is a principal eigenvalue to (2.1) this means that θ(λ) is zero.
Therefore, μ1 > 0 since otherwise θ(λ) never vanishes. Let us prove now
the claim and choose φn ∈ H1(Ω),

∫
Ω
φ2
n = 1 a positive eigenfunction

to (2.11) associated to θn := θ(λn), with λn decreasing to −∞. By
using the variational characterization of θ ([11]) we conclude that∫

Ω

|∇φn|2 + qφ2
n − λn

∫
Γ

mφ2
n = θn ≤ μ1,

i.e. θ(λn) ≤ μ1 for all n. On the other hand ‖φn‖H1(Ω) stays bounded.
This implies that, modulus a subsequence, φn ⇀ φ weakly in H1(Ω).
Since λn → −∞ and φn → φ in L2(∂Ω) we achieve that φ ∈ H1

Γ(Ω).
Taking limits in the weak equation for φn implies that∫

Ω

∇φ∇ϕ+ qφϕ = θ∗
∫

Ω

φϕ
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holds for all ϕ ∈ H1
Γ(Ω), with θ∗ = sup θn. Taking into account that

φ ≥ 0 and
∫

Ω
φ2 = 1 we find that φ is a principal eigenfunction to (2.4)

associated to θ∗. Then θ∗ = μ1 follows from the uniqueness of μ1 as a
principal eigenvalue to (2.4) and the proof of the claim is finished.

On the other hand, that λ1 and λN1 (q) (the principal Neumann eigen-
value of −Δ + q) share sign derives from the fact that λ1 > 0 (respec-
tively, λ1 < 0) if and only if θ(0) = λN1 (q) is positive (negative). In
addition, λ1 = 0 for all Γ ⊂ ∂Ω if λN1 (q) = 0.

Let us show now point v), i. e. the positivity up to the boundary
of a principal eigenfunction Φ1 which is positive in Ω. To this purpose
we first assume that λ1 > 0 and observe that ū = Φ1 defines a weak
supersolution to the problem

(2.12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu+ qu = 0 x ∈ Ω \B
∂u

∂ν
= 0 x ∈ ∂Ω

u = c x ∈ ∂B,

where B ⊂ B ⊂ Ω is any fixed open ball, c = inf∂B Φ1 > 0. Existence
and uniqueness of a weak (and therefore classic) solution u ∈ C2,α(Ω)
to (2.12) is consequence of the existence and positiveness of the first
eigenvalue μ̃ = μ̃1 to the problem

(2.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu+ qu = μ̃u x ∈ Ω \B
∂u

∂ν
= 0 x ∈ ∂Ω

u = 0 x ∈ ∂B.

In fact, existence of μ̃1 can be achieved by the variational arguments
already discussed in the course on this proof. Moreover,

μ̃1 = inf

∫
Ω\B{|∇u|2 + qu2}∫

Ω\B u
2

,

the infimum being extended to those u ∈ H1(Ω \ B) which vanish
on ∂B. From this characterization it follows that μ̃1 ≥ λN1 (q) while
λN1 (q) > 0 due to the assumption λ1 > 0. Thus μ̃1 > 0 and so

Φ1 ≥ u x ∈ Ω,

with u the solution to (2.12). On the other hand, classical maximum
principle implies that u > 0 in Ω. Therefore, the same happens to Φ1.
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For the case λ1 < 0 we observe in turn that ū = Φ1 constitutes a
supersolution to the alternative problem

(2.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu+ qu = 0 x ∈ Ω \B
∂u

∂ν
= λ1mu x ∈ ∂Ω

u = c x ∈ ∂B,

with B and c as above. Existence and uniqueness of a positive classic
solution u to (2.14) is a consequence of the fact μ̂1 > 0 where μ̂ = μ̂1

is the first eigenvalue to

(2.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu+ qu = μ̂u x ∈ Ω \B
∂u

∂ν
= λ1mu x ∈ ∂Ω

u = 0 x ∈ ∂B.

In fact

μ̂1 = inf

∫
Ω\B{|∇u|2 + qu2} − λ1

∫
Γ
mu2∫

Ω\B u
2

,

where functions u ∈ H1(Ω \ B) in the infimum vanish on ∂B. We
assert μ̂1 > 0, otherwise consider any associated positive eigenfunction
û1 ∈ H1(Ω \B) and extend it to Ω as û1 = 0 in B. Then, by using the
notation of the eigenvalue problem (2.11) we obtain

θ(λ1) ≤
∫

Ω
{|∇û1|2 + qû2

1} − λ1

∫
Γ
mû2

1∫
Ω
û2

1

= 0.

On the other hand θ(λ1) = 0 and so û1 defines a principal eigenfunction
associated to θ(λ1) with respect to problem (2.11). Since û1 vanishes in
the whole ball B this is impossible and μ̂1 must be positive. Therefore,
being Φ1 ≥ u where u is the solution to (2.14), we conclude again that
Φ1 > 0 in Ω.

�

Let us briefly discuss now the monotonicity properties of the prin-
cipal eigenvalue λ1(Γ) to (1.1) as a function of Γ. Accordingly, set
μ = μ1(Γ) and θ = θ(λ,Γ) the principal eigenvalues to the auxiliary
problems (2.4) and (2.11), respectively, where the choice m = χΓ has
been performed in (2.11). From the variational expression for θ it fol-
lows that if Γ ⊂ Γ′ ⊂ ∂Ω, Γ �= Γ′, then

θ(λ,Γ) < θ(λ,Γ′)

provided λ < 0, meanwhile the reverse strict inequality holds if λ >
0 (see a detailed analysis in [11]). Similarly, μ1(Γ) < μ1(Γ

′) holds
under the same conditions for Γ,Γ′. Our next statement is a direct
consequence of these reflections.
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Lemma 2.4. Let Γ � Γ′ be smooth nonempty strict subdomains of ∂Ω.
Assume

μ1(Γ) > 0.

If the first Neumann eigenvalue λN1 (q) < 0, then

λ1(Γ) < λ1(Γ
′),

while the reverse inequality holds true if λN1 (q) > 0.

Remark 2.5.
a) Since the signs of λ1(Γ) and λN1 (q) (whenever λ1(Γ) is defined) coin-
cide, Lemma 2.4 says that λ1(Γ) increases with Γ if λ1(Γ) < 0 while it
decreases with Γ if λ1(Γ) > 0. On the other hand, if λ1(Γ) vanishes for
some Γ this means that λN1 (q) = 0 and hence λ1(Γ) = 0 for all Γ ⊂ ∂Ω.

b) It follows from (2.5) that λ1(Γ) is defined for all Γ ⊂ ∂Ω provided
λN1 (q) > 0. On the other hand, if

λN1 (q) < 0 < λD1 (q),

it can be shown that μ1(Γ) < 0 if Γ approaches ∂Ω while μ1(Γ) > 0
if Γ is conveniently small (details are omitted for the sake of brevity).
Therefore, λ1(Γ) is defined in this case depending upon the “size” of Γ.

Our next result deals with the continuity of the principal eigenvalue
λ1 with respect to variations in the flux region Γ. For the sake of
simplicity, only the case m(x) = χΓ(x) will be considered. To this
objective we are introducing a notion of perturbation which largely
suffices for our purposes here (see Section 3). Let Γn be a sequence of
smooth subdomains of ∂Ω and Γ0 ⊂ ∂Ω a fixed subdomain. By

(2.16) lim Γn = Γ0,

it is understood either one of the following two properties:

a) There exist sequences Γ′
n, Γ′′

n of smooth subdomains such that
Γ′
n ⊂ Γn ∩ Γ0 is increasing, Γ′′

n ⊃ Γn ∪ Γ0 is decreasing and
lim Γ′

n = lim Γ′′
n = Γ0.

b) There exist sequences Γ′
n, Γ′′

n, the former increasing, the latter a
decreasing sequence, of smooth subdomains such that lim Γ′

n =
lim Γ′′

n = Γ0 and satisfying that for each n, the relations Γ′
n ⊂

Γm, Γ′′
n ⊃ Γm hold for all m ≥ n.

Notice that both conditions imply lim Γn = Γ0 in the set theory
sense and that both definitions are coherent with monotone conver-
gence. Next lemma can be shown by employing similar ideas as the
ones involved in Lemma 2.7. Thus, its proof is omitted.

Lemma 2.6. Assume that Γn, Γ0 are smooth subdomains of ∂Ω satis-
fying (2.16). Then,

limμ1(Γn) = μ1(Γ0).
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Lemma 2.7. Suppose Γn, Γ0 are smooth subdomains of ∂Ω such that

lim Γn = Γ0

according the previous definition, together with μ1(Γ0) > 0. Then
λ1(Γn) is defined for large n and

limλ1(Γn) = λ1(Γ0).

Proof. That λ1(Γn) is well-defined for large n follows from Lemma 2.6.
On the other hand, no generality is lost if it is assumed in the sequel
that λ1(Γ) > 0 for all the involved subdomains Γ ⊂ ∂Ω.

Setting λ′n = λ1(Γ
′
n), it is clear from the definition (2.16) and Lemma

2.4 that it is enough to show that

limλ′n = λ1(Γ0).

Fix λ′ = limλ′n (λ′ ≥ λ1(Γ0)) and pick the sequence of positive eigen-
functions Φ′

n associated to λ′n, normalized so as
∫
∂Ω

Φ′
n

2 = 1. Equality∫
Ω

|∇Φ′
n|2 + qΦ′

n
2

= λ′n

∫
Γn

Φ′
n

2

for all n implies that
∫

Ω
|∇Φ′

n|2 = O(1). Otherwise, set Φ′
n = tnvn with

t2n =
∫

Ω
|∇Φ′

n|2. Then, passing to a subsequence, vn ⇀ v weakly in
H1(Ω) with v = 0 on ∂Ω and∫

Ω

|∇v|2 + qv2 ≤ 0.

From (2.5) λD1 (q) > σ1(Γ0) > 0 (λD1 (q) the first Dirichlet eigenvalue of
−Δ + q in Ω), which says that v = 0. But now one has that vn → v
in H1(Ω) which should imply that

∫
Ω
|∇v|2 = 1 which is impossible.

Therefore,
∫

Ω
|∇Φ′

n|2 is bounded, Φ′
n is bounded inH1(Ω) and, modulus

a subsequence, Φ′
n → Φ′ with Φ′ nonnegative together with

∫
∂Ω

Φ′2 = 1.
By taking limits in the weak equations for Φ′

n we obtain that Φ′ is a
principal eigenfunction associated to λ′. Thus, the uniqueness of λ1(Γ0)
implies that λ′ = λ1(Γ0), as we wanted to prove.

�

Remark 2.8. By reasoning with similar arguments (see the proof of
Theorem 5.6 below) it can be shown that the sequence Φ1,n of nor-
malized positive eigenfunctions associated to λ1(Γn) also converges in
H1(Ω) to the normalized positive eigenfunction Φ1 of (1.1) regarded
on Γ = Γ0. In other words, continuous dependence also extends to
positive normalized eigenfunctions.

Once the existence of the principal eigenvalue has been settled down,
we need for subsequent use, a corresponding result of Fredholm alterna-
tive type. Such a result is next stated and a direct proof in a “varia-
tional guise” is also provided.
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Theorem 2.9. Suppose m ∈ L∞(Ω) is a nonnegative function sup-
ported on Γ and let f ∈ H1(Ω)∗ (the dual space of H1(Ω)), g ∈ L2(∂Ω)
be arbitrary. Assume that condition (2.3) holds. Then, the problem

(2.17)

⎧⎨
⎩
−Δu+ qu = f x ∈ Ω

∂u

∂ν
= λ1mu+ g x ∈ ∂Ω,

possesses a solution u ∈ H1(Ω) if and only if the following compatibility
condition holds

(2.18) 〈f,Φ1〉 +

∫
∂Ω

gΦ1 = 0,

where Φ1 ∈ H1(Ω) is any eigenfunction associated to λ1 and 〈·, ·〉 stands
for the duality pairing between H1(Ω) and its dual. Moreover, such a
solution u ∈ H1(Ω) is unique under the restriction

(2.19)

∫
∂Ω

m uΦ1 = 0.

Proof. For simplicity in the notation we directly consider m = χΓ, the
characteristic function of Γ (the case m general is handled in the same
way).

First of all, by a weak solution to (2.17) it is understood a function
u ∈ H1(Ω) such that the following equality holds

(2.20)

∫
Ω

∇u∇ψ + quψ = λ1

∫
Γ

uψ + 〈f, ψ〉 +

∫
∂Ω

gψ, ∀ψ ∈ H1(Ω)

Thus, if such a solution u ∈ H1(Ω) exists then the necessity of (2.18)
follows by choosing ψ = Φ1 in the above relation.

To show the sufficiency of (2.18) we first state the existence of a
second eigenvalue λ2 > λ1 to (1.1). To this purpose, we introduce in
H1(Ω) the scalar product

(2.21) [u, v] =

∫
Ω

∇u∇v + quv +M

∫
Γ

uv,

where M ≥ 0 is chosen so that M + λ1 > 0. In fact,

[u, u] ≥ (M + λ1)

∫
Γ

u2,

for all u ∈ H1(Ω). Thus, thanks to condition (2.3) [u, u] = 0 implies
u = 0. Moreover, by arguing as in the proof of inequality (2.24) below,
it can be shown that (2.21) defines an equivalent norm in H1(Ω).

To state the existence of λ2 we now observe that eigenfunctions Φ
to (1.1) associated to eigenvalues λ �= λ1 (and so λ > λ1) must satisfy
the orthogonality condition ∫

Γ

ΦΦ1 = 0,



14 R. PARDO, A. L. PEREIRA AND J. SABINA

which amounts to [Φ,Φ1] = 0. Therefore, we study the quadratic
functional J(u) =

∫
Ω
|∇u|2 + qu2 on

M1 = M∩ {Φ1}⊥,
where M is defined in (2.7), {Φ1}⊥ = {u : [u,Φ1] = 0} and where
orthogonality “ ⊥ ” will be understood in the sequel with respect to
[·, ·]. Notice that

{Φ1}⊥ =

{
u ∈ H1(Ω) :

∫
Γ

uΦ1 = 0

}
.

By arguing as in the proof of Theorem 2.1, there exists a function
Φ2 ∈ {Φ1}⊥ such that

(2.22) λ2 := inf
u∈{Φ1}⊥

∫ |∇u|2 + qu2∫
Γ
u2

=

∫ |∇Φ2|2 + qΦ2
2∫

Γ
Φ2

2

.

Thus, Φ2 satisfies

(2.23)

∫
Ω

∇Φ2∇ψ + qΦ2ψ = λ2

∫
Γ

Φ2ψ, ∀ψ ∈ {Φ1}⊥.
To show that Φ2 is an eigenfunction we need that the equality be true
for all ψ ∈ H1(Ω) (not merely for ψ ∈ {Φ1}⊥). However, an arbitrary
function u ∈ H1(Ω) can be written as

u = tΦ1 + ψ,

with ψ ∈ {Φ1}⊥, t ∈ R. Now, since
∫

Γ
Φ1Φ2 = 0 we find∫

Ω

∇Φ2∇Φ1 + qΦ2Φ1 = 0.

Therefore, (2.23) holds for any ψ ∈ H1(Ω). Hence, Φ2 is a weak eigen-
function, λ2 defines an eigenvalue and indeed constitutes the second
eigenvalue to (1.1) (no other one lies between λ1 and λ2).

We are next showing the existence of a weak solution u∗ to (2.17)
provided that (2.18) holds. To this purpose consider the quadratic
functional F : {Φ1}⊥ → R defined as

F (u) =
1

2

(∫
Ω

∇u2 + qu2 − λ1

∫
Γ

u2

)
− 〈f, u〉 −

∫
∂Ω

gu.

Observe that ∫
Ω

∇u2 + qu2 − λ1

∫
Γ

u2 ≥ (λ2 − λ1)

∫
Γ

u2,

for all u ∈ {Φ1}⊥. We claim the existence of C > 0, no depending on
u ∈ {Φ1}⊥, such that

(2.24)

∫
Ω

∇u2 + qu2 − λ1

∫
Γ

u2 ≥ C‖u‖2
H1(Ω),

for every u ∈ {Φ1}⊥. Assuming that the claim is true one obtains that
the functional F is coercive on {Φ1}⊥ which is a weakly closed part
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of H1(Ω). This means that F achieves an absolute minimum at some
u∗ ∈ {Φ1}⊥ and it implies, in particular, that the equation

(2.25)

∫
Ω

∇u∗∇ψ + qu∗ψ − λ1

∫
Γ

u∗ψ − 〈f, ψ〉 −
∫
∂Ω

gψ = 0,

holds provided ψ ∈ {Φ1}⊥. To conclude that u∗ is a weak solution we
need replacing in such equation ψ ∈ {Φ1}⊥ by ψ ∈ H1(Ω). By writing
u ∈ H1(Ω) as u = tΦ1 + ψ with t ∈ R, ψ ∈ {Φ1}⊥, we see that (2.25)
is equivalent to

(2.26)

∫
Ω

∇u∗∇Φ1 + qu∗Φ1 − λ1

∫
Γ

u∗Φ1 − 〈f,Φ1〉 −
∫
∂Ω

gΦ1 = 0.

Since u∗ ∈ {Φ}⊥ such relation is equivalent to the compatibility condi-
tion (2.18). Therefore, u∗ defines a weak solution to (2.17). Moreover,
it is the unique solution to (2.17) in {Φ1}⊥ since any other solution
û ∈ {Φ1}⊥ must exhibit the form û = u∗ + tΦ for t ∈ R and so

0 =

∫
Γ

(û− u∗)Φ1 = t

∫
Γ

Φ2
1.

Hence t = 0 and û = u∗.
To complete the proof we show now the claim. If a positive constant

as C in (2.24) could not be found then a sequence un ∈ {Φ1}⊥ would
exist such that ∫

Ω
|∇un|2 + qu2

n − λ1

∫
Γ
u2
n

‖un‖2
H1(Ω)

→ 0.

Setting un = tnvn with tn = ‖un‖H1(Ω) we obtain∫
Ω

|∇vn|2 + qv2
n − λ1

∫
Γ

v2
n = o(1) as n→ ∞,

and, passing to a subequence, vn ⇀ v weakly in H1(Ω). Thanks to the
inequality ∫

Ω

|∇vn|2 + qv2
n − λ1

∫
Γ

v2
n ≥ (λ2 − λ1)

∫
Γ

v2
n

we the achieve v ∈ H1
Γ(Ω). Thus

∫
Ω
|∇vn|2 + qv2

n = o(1), as n → ∞.
Taking ‘lim-inf’ we deduce

∫
Ω
|∇v|2+qv2 ≤ 0. Being μ1 > 0 this implies

that v = 0. But this entails that vn → 0 in L2(Ω) what in turn says
that

∫
Ω
|∇vn|2 = o(1) and finally that vn → 0 in H1(Ω). Due to the

fact that ‖vn‖H1(Ω) = 1 this is not possible, and the claim is proved. �

3. Tangential perturbations of Γ

In this section we introduce the notion of tangential deformation of
the flux region Γ ⊂ ∂Ω which will be involved in the main perturbation
results contained in next section. In addition, a further discussion on
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the differentiable structure of the boundary and other auxiliary calculus
results on ∂Ω will be also included here.

We are considering a class C2 vector field V : ∂Ω → RN which is
tangent to ∂Ω at every point. Recall that Ω ⊂ RN is assumed to be
a class C3 bounded domain. Hence, the field V can be extended as a
smooth field on the whole RN in such a way that V ∈ L∞(RN ,RN).
For later use, it will be always assumed that such extension has been
performed whenever the computations require it. On the other hand,
a suitable extension of V which is parallel to ∂Ω near ∂Ω can always
be constructed (see further details below).

Associated to the field V we set h : R×∂Ω → ∂Ω the flow generated
by V . Namely, for x0 ∈ ∂Ω, x(t) = h(t, x0) stands for the solution to
the initial value problem ⎧⎨

⎩
dx

dt
= V (x)

x(0) = x0.

We are using the same terminology h = h(t, x), h : R× RN → RN , to
designate the flow of the extension of V to the whole Rn. It is well-
known (see [9]) that h ∈ C2(R × RN ,RN). In addition, the following
properties hold true,

i) For every t ∈ R the mapping ht(x) := h(t, x) defines a class C2

diffeomorphism in RN . The same is true when ht is restricted
both to Ω and ∂Ω, i. e., when ht : Ω → Ω and ht : ∂Ω → ∂Ω.
Observe that both ∂Ω and Ω remain flow-invariant.

ii) h0(x) = x for all x ∈ RN . Moreover (ht)
−1(x) = h−t(x) for all

x ∈ RN .
iii) Dth(t, x) = V (h(t, x)) and D2

xth(t, x) = DV (h(t, x))Dxh(t, x)
for all (t, x) ∈ R× RN .

For every t ∈ R, we also introduce the composition map h∗t : C2(Ω) →
C2(Ω) defined as

h∗t (u)(x) = u(h(t, x)), x ∈ Ω.

Of course, h∗t is an isomorphism from C2(Ω) onto itself.
On the other hand, and as usual in perturbation of domains theory

([13]), smooth tangential fields V are going to be used to define the
perturbation of problem (1.1). This means that we are studying the
smoothness of function λ1(Γt), where

Γt = {ht(x) : x ∈ Γ},
and t is small.

As for the structure of ∂Ω it will be assumed that ∂Ω is endowed with
a finite atlas {(gi, Ui)}1≤i≤M , Ui ⊂ RN−1 open, gi = gi(s) ∈ C3(Ui,R

N),
so that the restriction of the atlas to Γ ∪ ∂Γ constitutes an atlas for
Γ as a manifold with boundary. Such atlas is chosen so that on every
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gi(Ui) ⊂ ∂Ω, the continuous outward normal field ν to Ω at ∂Ω can be
expressed as

ν(gi(s)) =
∂s1gi ∧ · · · ∧ ∂sN−1

gi

|∂s1gi ∧ · · · ∧ ∂sN−1
gi| .

As a matter of notation, for N − 1 linearly independent vectors v1,
· · · , vN−1 of RN , v1 ∧ · · · ∧ vN−1 will stands for the vector whose i-th
coordinate is the adjoint of the element wi in the matrix

columns (w, v1, . . . , vN−1),

with w = (w1, . . . , wN). On the other hand, the collection of smooth
functions {ζi(x)}1≤i≤M will stands for a partition of unity associated
to the atlas {(gi, Ui)}1≤i≤M .

The concept of tangential divergence (see [13]) is also involved in
next section. For a non necessarily tangent smooth vector field V on
∂Ω, its tangential divergence in ∂Ω is defined as the function a ∈ C(∂Ω)
such that ∫

∂Ω

V (x)∇∂Ωψ(x) dσ = −
∫
∂Ω

a(x)ψ(x) dσ

for all ψ ∈ C1
0(∂Ω), where ∇∂Ωψ stands for the tangential component

of ∇ψ, i. e. ∇∂Ωψ(x) = ∇ψ(x) − ∂ψ
∂ν

(x)ν(x). We are denoting

a = div ∂ΩV.

The tangential divergence of V can be expressed in local coordinates
(g, U) (subindex i is dropped for simplicity). In fact, a careful compu-
tation reveals that

(3.1)

div ∂ΩV =
1

J(s)

[
|∂s1V, . . . , ∂sN−1

g, ν| + · · · + |∂s1g, . . . , ∂sN−1
V, ν|

]
− 〈V, ν〉H,

where | · | designates the determinant of the matrix whose columns are
the vector enclosed between the bars, 〈·, ·〉 stands for the scalar product
in RN while

J(s) = |∂s1g ∧ · · · ∧ ∂sN−1
g|.

In addition,

(3.2) H(x) = div ν(x)

=
1

J(s)

[
|∂s1ν, . . . , ∂sN−1

g, ν| + · · ·+ |∂s1g, . . . , ∂sN−1
ν, ν|

]
,

and, as it is well-known, H coincides –modulus orientation– with (N −
1)H where H is the mean curvature of ∂Ω at x (see [21]). An alter-
native expression for div ∂ΩV can be found if one uses the so-called
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tubular coordinates around ∂Ω. Namely, x is represented in a suitable
neighborhood of ∂Ω as

(3.3) x = z + tν(z),

with z ∈ ∂Ω and t = d(x) = dist(x, ∂Ω) being x �→ (t(x), z(x)) a C2

mapping near ∂Ω. In that case, and by extending the normal ν so as
to have

(3.4) ν(z + tν(z)) = ν(z)

for z ∈ ∂Ω and |t| small, the tangential divergence can be written as

(3.5) div ∂ΩV = div V − ∂

∂ν
〈V, ν〉 − 〈V, ν〉H.

Certainly, the curvature term can be omitted if V is tangent to ∂Ω.
Moreover, formula (3.5) can be further simplified by extending the field
V in a neighborhood of ∂Ω such that

(3.6) V (x) = V (z) x = z + tν(z), for z ∈ ∂Ω, |t| small.

Observe that identity (3.6) can be employed to extend V outside ∂Ω.
Under this extension (3.5) reduces to

(3.7) div ∂ΩV = divV,

when V is tangent to ∂Ω. On the other hand, formula (3.2) can also
be obtained by using the change to tubular coordinates (3.3).

4. Smoothness of λ1 and a formula for its first variation

Our main objective in what follows will be to study the differentiable
dependence of the principal eigenvalue λ1 to (1.1), when the region Γ is
perturbed by the flow ht(·) associated to a tangential field V (Section
3). In other words, the differentiability in t of the function

t→ λ1(Γt),

Γt = ht(Γ) for |t| small. In Theorem 4.1 we prove the smoothness
of such function by changing variables in problem (1.1), observed in
Γt, in order to fix the flux region, and then using the Implicit Func-
tion Theorem in a fixed (Lagrangian) frame. An explicit formula for
the derivative is furnished in Theorem 4.2. Later in Theorem 5.1 an
optimized version will be obtained.

Recall that for a fixed region Γ ⊂ ∂Ω, μ1 = μ1(Γ) stands for the
principal eigenvalue to the auxiliary problem (2.4).

Theorem 4.1. Let Γ = Γ ∪ ∂Γ ⊂ ∂Ω, Γ �= ∂Ω, be a smooth and
connected N − 1-dimensional manifold with boundary ∂Γ, while V :
∂Ω → RN is a smooth tangent vector field to ∂Ω with associated flow
h : R× ∂Ω → ∂Ω. Setting

Γt = {y = h(t, x) : x ∈ Γ},
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consider the eigenvalue problem

(4.1)

⎧⎨
⎩
−Δv + q(y)v = 0 y ∈ Ω

∂v

∂ν
= λχΓt(y)v y ∈ ∂Ω,

and assume that μ1(Γ) > 0. Then, there exists ε0 > 0 such that the
following properties hold.

i) Problem (4.1) admits a principal eigenvalue λ1(t) for t ∈ (−ε0, ε0).
In addition, λ1(t) is a continuous function of t.

ii) If
(
λ1(t),Φ1(t)

)
denotes the principal eigenvalue to (4.1) and corre-

sponding positive eigenfunction normalized so that
∫

Γt
Φ1(t)

2 = 1, then
the mapping

t→
(
λ1(t), h

∗
t

(
Φ1(t)

))
, h∗t

(
Φ1(t)

)
= Φ1(t) ◦ ht

is smooth when regarded from (−ε0, ε0) and taking values in R×H1(Ω).

Proof. As a first observation, notice that Γt → Γ as t → 0 in the
sense of (2.16) since Γt = ht(Γ) (with ht = h(t, ·)) and ht is smooth
in t. By using the continuous dependence of μ1 on Γ (Lemma 2.6),
condition μ1(Γ) > 0 implies the positivity of μ1(Γt) for |t| < ε0 and
certain ε0 > 0 small. Hence, Theorem 2.1 ensures us the existence of
λ1(Γt) and its continuity as a function of t ∈ (−ε0, ε0) (Lemma 2.7).
For immediate use we fix the notation λ1(t) to denote the eigenvalue
λ1(Γt) and Φ1(t) ∈ H1(Ω) to name the normalized associated positive
eigenfunction.

To show ii) we first set X = H1(Ω) and Y = (H1(Ω))∗ (the dual
space of X) and observe that if v = v(y, t) ∈ X is an eigenfunction
associated to an arbitrary eigenvalue λ of (4.1) then∫

Ω

{∇v∇ϕ+ q(y)vϕ} dy = λ

∫
Γt

vϕ dσ(y),

for all ϕ ∈ X. By performing the change y = ht(x) = h(t, x), putting
u(x, t) = v(h(t, x), t) = h∗t (v)(x), ψ(x) = ϕ(h(t, x)) = h∗t (ϕ)(x) and
h∗t (q)(x) = q(h(t, x)), we arrive at

(4.2)

∫
Ω

{A(x, t)(∇u,∇ψ) + h∗t (q)(x)uψ}C(x, t) dx−

λ

∫
Γ

uψD(x, t) dσ(x) = 0,

for all ψ ∈ X, where

C(x, t) = det(Dh(t, x)),
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with Dh(t, x) =

(
∂hi
∂xj

)
1≤i,j≤N

, and where

D(x, t)ζi(x) =
|Dh(t, x)gs1 ∧ · · · ∧Dh(t, x)gsN−1

|
|gs1 ∧ · · · ∧ gsN−1

| ,

at x = g(s), s ∈ U , being {ζi}1≤i≤M the partition of the unity subor-
dinated to the finite atlas {(gi, Ui)} which describes the differentiable
structure of ∂Ω (Section 3). When writing the expression for D(x, t)
and for the sake of brevity, we have dropped the subindex i in the
chart (gi, Ui). In addition, for ξ, η ∈ RN the bilinear form A(x, t)(ξ, η)
in (4.2) is defined through

A(x, t)(ξ, η) = ξDh(t, x)−1(Dh(t, x)−1)TηT ,

where for a vector η = (η1, . . . , ηN) and a N ×N matrix A, ηT and AT

mean the corresponding transposed objects.
In view of (4.2) we introduce now the mapping

F : X ×R× (−ε0, ε0) → Y × R
(u, λ, t) �→ (F1(u, λ, t),F2(u, λ, t))

given by

〈F1(u, λ, t), ψ〉X,Y =∫
Ω

[
A(t, x)(∇u,∇ψ) + h∗t (q)(x)uψ

]
C(t, x) dx

− λ

∫
Γ

uψD(t, x) dσ

for ψ ∈ X and

(4.3) F2(u, λ, t) =
1

2

(∫
Γ

u2D(t, x) dσ − 1

)
.

Then, the eigenvalues λ of (4.1) with associated eigenfunctions v ∈ X,
normalized so that

∫
∂Ω
v2 = 1, are characterized as the zeros (u, λ, t) ∈

X ×R×R to equation

(4.4) F(u, λ, t) = 0,

where u = h∗t (v). In other words, (4.4) constitutes the weak Lagrangian
version of the perturbed problem (4.1).

Of course, our main purpose is solving with uniqueness equation (4.4)
for (u, λ, t) close (Φ1(0), λ1(0), 0) in X × R × R (recall that Φ1(0) ∈
H1(Ω) is the positive eigenfunction associated to λ1(0) normalized so
that

∫
Γ

Φ1(0)2 = 1).
It is clear that F is a C1 mapping while

F(Φ1(0), λ1(0), 0) = 0.
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On the other hand if L ∈ L(X ×R, Y ×R) is defined by

L(û, λ̂) = D(u,λ)F|(u,λ,t)=(Φ1(0),λ1(0),0)(û, λ̂),

i. e., L is the Frechet derivative of F with respect to (u, λ), evaluated

at (Φ1(0), λ1(0), 0) and acting on (û, λ̂), then,

L(û, λ̂) =(∫
Ω

∇û∇ · +qû · −λ̂
∫

Γ

Φ1(0) · −λ1(0)

∫
Γ

û · ,
∫

Γ

Φ1(0)û

)
,

where the dot “·” in the first component means the dual action of such
component as an element of the dual space Y .

The operator L defines a topological isomorphism from X ×R onto
Y × R. In fact, for (f, θ) ∈ Y × R given, the unique solution (û, λ̂) to
equation

L(û, λ̂) = (f, θ),

is provided by the unique weak solution û ∈ X to the boundary value
problem

(4.5)

⎧⎪⎨
⎪⎩
−Δû + qû = f x ∈ Ω

∂û

∂ν
= λ1(0)χΓ(x)û+ λ̂χΓΦ1(0),

which satisfies the extra condition

(4.6)

∫
Γ

Φ1(0)û = θ.

Now, problem (4.5) admits a solution if and only if (Theorem 2.9)

λ̂ = −〈f,Φ1(0)〉X,Y ,
since

∫
Γ

Φ1(0)2 = 1. This provides a unique value for λ̂. For this value
there exists a unique solution u∗ ∈ X to (4.5) such that∫

Γ

Φ1(0)u∗ = 0.

All other remaining solutions u ∈ X to (4.5) have the form u = u∗ +
tΦ1(0). Thus, the choice t = θ furnishes the unique solution to (4.5)–
(4.6).

Therefore, the Implicit Function Theorem, in its standard infinite-
dimensional version (see [9]) permits us concluding the existence of
ε > 0 (which, after possibly diminishing its value, we name again ε0)

and C1 functions λ̃1(t), u1(t), the latter observed as taking values in
X, such functions being defined in (−ε0, ε0) and such that

F(u1(t), λ̃1(t), t) = 0,

for |t| < ε0, together with (λ̃1(0), u1(0)) = (λ1(0),Φ1(0)).
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On the other hand (u, λ, t) = (h∗t (Φ1(t)), λ1(t), t) solves (4.4) for
|t| < ε0. Moreover, thanks to Lemma 2.7 and Remark 2.8

(h∗t (Φ1(t)), λ1(t), t) → (Φ1(0), λ1(0), 0),

as t → 0 in X × R × R. Therefore, the uniqueness assertion of the
Implicit Function Theorem permit us concluding that

(λ1(t), h
∗
t (Φ1(t))) = (λ̃1(t), u1(t)),

for |t| small. Thus, the proof of point ii) is completed. �

Our next task consists in obtaining an explicit formula for the first
variation of λ1 with respect to Γ. The natural way to do that is tak-
ing derivatives in equation (4.2). To this purpose we face the task of
computing the surface integral

(4.7) I =

∫
∂Ω

∂Φ1(0)

∂ν

(
Φ1(0) divV + 2

∂Φ1(0)

∂V

)
dσ,

(∂/∂V stands for the derivative in the direction of V ). However,
∇Φ1(0) must exhibit some kind of discontinuity on ∂Γ (Theorem 2.1)

and hence the integrability of
∂Φ1(0)

∂V
near ∂Γ becomes unclear. Ac-

cordingly, we need to avoid the possible discontinuities of such function
on ∂Γ. To this objective we are introducing some more notation. For
δ > 0 small we set

Γ−
δ = {x ∈ Γ : dist∂Ω(x, ∂Γ) > δ}, Γ+

δ = {x ∈ ∂Ω : dist∂Ω(x,Γ) > δ}
where for A ⊂ ∂Ω and x ∈ ∂Ω, dist∂Ω(x,A) = infy∈A dist∂Ω(x, y),
dist∂Ω being the geodesic distance in ∂Ω. Similarly,

Uδ = {x ∈ ∂Ω : dist∂Ω(x, ∂Γ) < δ}.
Notice that ∂Ω = Γ+

δ ∪ Γ−
δ ∪ Uδ.

On the other hand, and for ε > 0 small we put

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.
Observe that Hε : ∂Ω → ∂Ωε defined as Hε(z) = z − εν(z) constitutes
a C2 diffeomorphism from ∂Ω onto ∂Ωε. By means of Hε, Γ±

δ and Uδ
are transported to ∂Ωε and we are setting

Γ±
δ,ε = Hε(Γ

±
δ ) Uδ,ε = Hε(Uδ).

In addition, ∂Ωε = Γ+
δ,ε ∪ Γ−

δ,ε ∪ Uδ,ε.
Consider now the “displaced” surface integral

(4.8) Iδ,ε =

∫
Uδ,ε

∂Φ1(0)

∂ν

(
Φ1(0) divV + 2

∂Φ1(0)

∂V

)
dσ.
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Since ∇Φ1(0) is discontinuous through ∂Γ, we cannot take the existence
of the limit

lim
ε→0+

Iδ,ε

for granted. Therefore, it is still less obvious that the iterated limit

(4.9) I0 := lim
δ→0+

( lim
ε→0+

Iδ,ε)

exists. Such an existence is provided in our next result. Its value is
involved in the expression for the derivative of λ1 with respect to t at
t = 0 which is also furnished in the following statement.

Theorem 4.2. Under the hypotheses of Theorem 4.1, let λ1 = λ1(t)
be the principal eigenvalue to (4.1) for t small. Then

i) The iterated limit I0 in (4.9) exists.
ii) The first variation of λ1 with respect to t at t = 0 is given by

(4.10)
dλ1

dt

∣∣∣
t=0

= I0 − λ1(0)

∫
∂Γ

Φ1(0)2〈V, ν∂Γ〉 dσ∂Γ,

where ν∂Γ stands for the outer unit normal field to ∂Γ relative to
Γ, dσ∂Γ is the volume element of ∂Γ and Φ1(0) ∈ H1(Ω) stands
for the normalized positive eigenfunction associated to λ1(0).

Remark 4.3. If the pointwise limit as ε→ 0+ could be permuted with
the integral Iδ,ε, i. e. if

(4.11) lim
ε→0+

Iδ,ε = λ1(0)

∫
Uδ

χΓ

[
Φ1(0)2 div V +

∂

∂V

(
Φ1(0)2

)]
,

then

(4.12) lim
ε→0+

Iδ,ε = λ1(0)

∫
Uδ∩Γ

div
(
Φ1(0)2V

)

= λ1(0)

∫
Uδ∩Γ

div ∂Ω

(
Φ1(0)2V

)

= λ1(0)

[∫
∂Γ

Φ1(0)2〈V, ν∂Γ〉 −
∫
{dist∂Ω(x,∂Γ)=δ}

Φ1(0)2〈V, ν∂Γ〉
]
.

Since Φ1(0) ∈ Cα(Ω) (Theorem 2.1) it is clear that the last expression in
(4.12) goes to zero as δ → 0+. Thus, the expected value for I0 in (4.10)
is just zero. However, the discontinuity of ∇Φ1(0) through Γ makes
unclear that the ε limit can be permuted with the integral in (4.11).
Nevertheless, by following a different approach we are showing in next
section (Theorem 5.1) that I0 = 0 provided q and Ω are sufficiently
smooth.

Proof of Theorem 4.2. For convenience, we are using the notation of
the proof of Theorem 4.1 and so we designate by

u(t, ·) = h∗t
(
Φ1(t)

)
= Φ1(t) ◦ ht.
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Differentiating with respect to t in (4.2) and setting t = 0 yields

(4.13)

∫
Ω

{∇u̇0∇ψ + qu̇0ψ} − λ1(0)

∫
γ

u̇0ψ

+

∫
Ω

[
Ȧ(0, x)(∇Φ1(0),∇ψ) +

∂q

∂V
Φ1(0)ψ

]

+

∫
Ω

{∇Φ1(0)∇ψ + qΦ1(0)ψ}Ċ(0, x)

− λ̇1(0)

∫
Γ

Φ1(0)ψ − λ1(0)

∫
Γ

Φ1(0)ψḊ(0, x) = 0,

for all ψ ∈ H1(Ω), where

u̇0 = ∂tu(0, x), λ̇1(0) =
dλ1

dt

∣∣∣∣
t=0

, Ȧ(0, x) = ∂tA(0, x),

Ċ(0, x) = ∂tC(0, x) and Ḋ(0, x) = ∂tD(0, x).

From the expressions for A, C,D (Theorem 4.1) it can be checked
that

Ȧ(0, x)(ξ, η) = −ξ(DV +DV T
)
ηT ξ, η ∈ RN ,

while

Ċ(0, ·) = divV.

On the other hand, a direct computation shows that

Ḋ(0, x) =
1

J(s)

[
|∂s1V, . . . , ∂sN−1

g, ν| + · · · + |∂s1g, . . . , ∂sN−1
V, ν|

]
,

where such expression has been evaluated at the image gi(Ui) of a chart
(gi, Ui) of ∂Ω (i has been dropped for simplicity). Taking into account
(3.1) together with the fact that V is a tangent field on ∂Ω we can
write

Ḋ(0, x) = div ∂ΩV (x), x ∈ ∂Ω.

Furthermore, by employing the parallel extension (3.6) of V near ∂Ω
we conclude that (see (3.7))

Ḋ(0, x) = div V (x).

By substituting the values of Ȧ, Ċ, Ḋ in (4.13) and taking into account
the identity,∫

Ω

{∇Φ1(0)(div V )∇ψ + qΦ1(0)(divV )ψ} = λ1(0)

∫
Γ

(divV )Φ1(0)ψ

−
∫

Ω

ψ∇Φ1(0)∇(divV ),
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which follows from the weak equation for Φ1(0), we deduce that∫
Ω

{∇u̇0∇ψ + qu̇0ψ} − λ1(0)

∫
Γ

u̇0ψ

=

∫
Ω

{∇Φ1(0)
(
DV +DV T

)∇ψT − ∂q

∂V
Φ1(0)ψ}

+

∫
Ω

ψ∇Φ1(0)∇(div V ) + λ̇1(0)

∫
Γ

Φ1(0)ψ

holds for all ψ ∈ H1(Ω). But this means that w = u̇0 defines a weak
solution to

(4.14)

⎧⎪⎨
⎪⎩
−Δw + qw = f x ∈ Ω

∂w

∂ν
= λ1(0)χΓw + g x ∈ ∂Ω,

with f ∈ (H1(Ω))∗ defined as

〈f, ψ〉 =

∫
Ω

∇Φ1(0)
(
DV +DV T

)∇ψT − ∂q

∂V
Φ1(0)ψ

+

∫
Ω

ψ∇Φ1(0)∇(div V )

and g = λ̇1(0)χΓΦ1(0).
Therefore, compatibility condition (2.18) yields

(4.15) λ̇1(0) +

∫
Ω

∇Φ1(0)
(
DV +DV T

)∇Φ1(0)T+∫
Ω

Φ1(0)∇Φ1(0)∇(divV ) −
∫

Ω

∂q

∂V
Φ1(0)2 = 0,

which gives an explicit expression for λ̇1(0).

Differentiating equation F2(u(·, t), λ1(t), 0) = 0 (Theorem 4.1) at
t = 0, we obtain ∫

Γ

u̇0Φ1(0) = −1

2

∫
Γ

Φ1(0)Ḋ(0, x).

This is just the normalization condition that permit us solving problem
(4.14) for u̇0 with uniqueness (see Theorem 2.9).

We proceed next to clear out the expression for λ̇1(0) in (4.15). By
setting

Aε =

∫
Ωε

∇Φ1(0)
(
DV +DV T

)∇Φ1(0)T ,

Bε =

∫
Ωε

Φ1(0)∇Φ1(0)∇(divV ),

it is clear that

lim
ε→0+

Aε =

∫
Ω

∇Φ1(0)
(
DV +DV T

)∇Φ1(0)T
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while

lim
ε→0+

Bε =

∫
Ω

(∇Φ1(0)∇(div V )
)
Φ1(0),

and so,

(4.16) − λ̇1(0) = lim
ε→0+

[
Aε +Bε

] − ∫
∂Ω

Φ1(0)2
∂q

∂V
.

On the other hand, integration by parts gives

Aε =

∫
Ωε

{|∇Φ1(0)|2divV − 2
∂Φ1(0)

∂V
ΔΦ1(0)} +

2

∫
∂Ωε

∂Φ1(0)

∂ν

∂Φ1(0)

∂V
−

∫
∂Ωε

|∇Φ1(0)|2〈V, ν〉,

where the last integral vanishes for ε small due to 〈V, ν〉 = 0 near ∂Ω
(see (3.6)). In addition

Bε = −
∫

Ωε

{Φ1(0)ΔΦ1(0) + |∇Φ1(0)|2}divV+∫
∂Ωε

Φ1(0)
∂Φ1(0)

∂ν
divV.

Thus, by choosing δ > 0 small we obtain

Aε +Bε = −
∫

Ωε

q div (Φ1(0)2V )

+

∫
∂Ωε

(
Φ1(0)div V + 2

∂Φ1(0)

∂V

)
∂Φ1(0)

∂ν

=

∫
Ωε

Φ1(0)2 ∂q

∂V
+ Iδ,ε

+

{∫
Γ+

δ,ε

+

∫
Γ−

δ,ε

} (
Φ1(0)div V + 2

∂Φ1(0)

∂V

)
∂Φ1(0)

∂ν
.

On the other hand,

lim
ε→0+

{∫
Γ+

δ,ε

+

∫
Γ−

δ,ε

} (
Φ1(0)divV + 2

∂Φ1(0)

∂V

)
∂Φ1(0)

∂ν

= λ1(0)

∫
Γ−

δ

div (Φ1(0)2V )

= λ1(0)

∫
Γ−

δ

div ∂Ω(Φ1(0)2V )

=

∫
∂Γ−

δ

Φ1(0)2〈V, ν∂Γ−
δ
〉,
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where ν∂Γ−
δ

stands for the outward unit normal to Γ−
δ at ∂Γ−

δ and the

divergence theorem for manifolds with boundary has been employed
([7]). Therefore

lim
ε→0+

[
Aε +Bε

]
=

∫
∂Ω

Φ1(0)2
∂q

∂V
+

∫
∂Γ−

δ

Φ1(0)2〈V, ν∂Γ−
δ
〉 + lim

ε→0+
Iδ,ε,

where the existence of the last limit is directly furnished by the equality.
By substituting in (4.16) we get

−λ̇1(0) = lim
ε→0+

Iδ,ε +

∫
∂Γ−

δ

Φ1(0)2〈V, ν∂Γ−
δ
〉.

Finally, by observing that Φ ∈ Cα(Ω) and taking limits in the last
expression as δ → 0+ we obtain both the existence of the iterated
limit (4.9) together with formula (4.10) for λ̇1(0). This concludes the
proof. �

5. The first variation of λ1 on smooth domains

The objective of this section is showing that formula (4.10) for the
derivative of the principal eigenvalue λ = λ1(t) to problem (4.1),⎧⎨

⎩
−Δv + q(y)v = 0 y ∈ Ω

∂v

∂ν
= λχΓt(y)v y ∈ ∂Ω,

can be improved by removing the term I0. As in Section 4, Γt is
designating the perturbation at time t of a smooth subdomain Γ ⊂ ∂Ω,
through the flow h = h(t, x) of a class C2 tangential field V on ∂Ω (see
Section 3).

Such a formula is obtained in next result under extra smoothness on
both q and Ω. We proceed in this way by the sake of simplicity since
such requirement may be considerably weakened. We are assuming in
addition that −Δ + q is invertible under Neumann conditions. This is
a mere technical assumption and may be removed (see Remark 5.14).

Theorem 5.1. Under the hypotheses of Theorem 4.1 on Γ assume in
addition that Ω is C∞, q ∈ C∞(Ω) and that none of the Neumann
eigenvalues of −Δ + q in Ω vanishes. Then, the derivative of the prin-
cipal eigenvalue λ1(t) to (4.1) is given by the expression

(5.1)
dλ1

dt

∣∣∣
t=0

= −λ1(0)

∫
∂Γ

Φ1(0)2〈V, ν∂Γ〉 dσ∂Γ,

where ν∂Γ stands for the outer unit normal field to ∂Γ relative to Γ,
dσ∂Γ is the volume element of ∂Γ and Φ1(0) stands for the normalized
positive eigenfunction associated to λ1(0).

Remark 5.2.
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a) Notice that λN1 (q) > 0 both implies (2.3) and the invertibility of
−Δ + q under Neumann conditions.

b) Extra smoothness on q and Ω is only needed in the proof of Theorem
5.9 below.

To show Theorem 5.1 we proceed by successive steps. Our first result
gives a derivative’s formula for a “regularized” version of (4.1).

Lemma 5.3. Suppose Γ ⊂ ∂Ω and V = V (x) satisfy the hypotheses of
Theorem 4.1 and choose m ∈ C2(∂Ω) a nonnegative function supported
in Γ. Then, problem

(5.2)

⎧⎨
⎩
−Δv + q(y)v = 0 y ∈ Ω

∂v

∂ν
= λm(y, t)v y ∈ ∂Ω,

with
m(y, t) = h∗−t(m)(y) = m(h(−t, y))

possesses the following properties.

i) There exits ε0 such that (5.2) has a principal eigenvalue λ =
λ1(t) for |t| < ε0 being λ1(t) a C1 function in (−ε0, ε0).

ii) The derivative λ′1 of λ1 at t = 0 can be expressed as

(5.3) λ′1(0) = −λ1(0)

∫
∂Ω

m div(Φ1(0)2V ) dσ,

where (λ1(0),Φ1(0)) is the principal eigenpair corresponding to
t = 0 and Φ1(0) is positive and normalized according to∫

∂Ω

mΦ1(0)2 dσ = 1.

Remark 5.4. Observe that

χΓt(y) = h∗−t(χΓ)(y) y ∈ ∂Ω,

for all t ∈ R. This shows the coincidence between (4.1) and (5.2) when
m = χΓ.

Proof of Lemma 5.3. The proof of existence and smoothness of λ1(t) is
that the one of Theorem 4.1 but in a better scenario: χΓ is replaced
with a smooth function m ∈ C2(∂Ω). That is why, and thanks to
Theorem 2.1-iii), the principal eigenfunction Φ1(0) ∈ C2(Ω).

Now, by keeping the notation of Theorem 4.2 and employing the
regularity of Φ1(0) up to the boundary ∂Ω we achieve that Aε → A,
Bε → B with

A =

∫
Ω

{|∇Φ1(0)|2divV − 2
∂Φ1(0)

∂V
ΔΦ1(0)} +

2

∫
∂Ω

∂Φ1(0)

∂ν

∂Φ1(0)

∂V
−

∫
∂Ω

|∇Φ1(0)|2〈V, ν〉,
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and

B = −
∫

Ω

{Φ1(0)ΔΦ1(0) + |∇Φ1(0)|2}divV+∫
∂Ω

Φ1(0)
∂Φ1(0)

∂ν
divV.

Thus,

−λ′1(0) = A +B −
∫

Ω

∂q

∂V
Φ1(0)2 = I,

where I is the integral in (4.7). Being Φ1(0) smooth up to ∂Ω we obtain

I = λ1(0)

∫
∂Ω

m div(Φ1(0)2V ) dσ,

and the proof is concluded. �

Our next result states that function m0(x) = χΓ(x) can be suitably
approximated by smooth functions defined on ∂Ω. Its proof involves the
use of a partition of unity and standard regularization and is omitted.

Lemma 5.5. Set m0 = χΓ. Then there exists a family of nonnegative
functions mε ∈ C∞(∂Ω), 0 < ε < ε1 such that

i) mε → m0 in Lq(∂Ω) for all 1 ≤ q <∞.
ii) ‖mε‖∞,∂Ω ≤ K for certain K > 0.
iii) Γε := supp mε ⊂ {x ∈ ∂Ω : dist∂Ω(x,Γ) < δ} where δ = δ(ε)

and δ(ε) → 0 as ε → 0.

Assume now that Γ satisfies the hypotheses of Theorem 4.1, in par-
ticular condition (2.3),

μ1(Γ) > 0.

It follows from Section 2 (Lemma 2.6) that

μ1(Γε) > 0

for ε small, say 0 < ε < ε0, where Γε designates the support of the
approximation mε to m0 = χΓ constructed in Lemma 5.5. There-
fore, Theorem 2.1 provides the existence of a unique principal eigenpair
(λ, u) = (λ1,ε,Φ1,ε) to

(5.4)

⎧⎨
⎩
−Δu+ q(x)u = 0 x ∈ Ω

∂u

∂ν
= λmε(x)u x ∈ ∂Ω,

with Φ1,ε the positive eigenfunction normalized so as
∫
∂Ω
mεΦ

2
1,ε = 1.

We are now in position to get a limit expression for the derivative of
the principal eigenvalue λ1(t) to (4.1).
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Theorem 5.6. Under the conditions of Theorem 4.1 let λ = λ1(t) the

principal eigenvalue to (4.1). Then λ′1(0) =
dλ1

dt |t=0
satisfies

(5.5) λ′1(0) = −λ1(0) lim
ε→0

∫
∂Ω

mε div(Φ2
1,εV ) dσ,

where (λ1,ε,Φ1,ε) stands for the principal normalized eigenpair to (5.4).

Remark 5.7. It is shown in the course of the proof of Theorem 5.6
below, that λ1,ε → λ1(0) and Φ1,ε → Φ1(0) in H1(Ω) as ε→ 0.

Proof of Theorem 5.6 relies upon the following generalization of The-
orem 4.1.

Lemma 5.8. Assume that Γ ⊂ ∂Ω and V (x) fulfill the requirements of
Theorem 4.1 and fix q > N − 1. For t ∈ R, m ∈ Lq(∂Ω) consider the
problem

(5.6)

⎧⎨
⎩
−Δv + q(y)v = 0 y ∈ Ω

∂v

∂ν
= λm(y, t)v y ∈ ∂Ω,

where m(y, t) = h∗−t(m)(y) = m(h(−t, y)) and set m0 = χΓ(x). Then
there exist positive numbers ε0, δ, η and class C1 mappings

λ : B(m0, δ) × (−ε0, ε0) −→ R
(m, t) �−→ λ(m, t),

u : B(m0, δ) × (−ε0, ε0) −→ H1(Ω)
(m, t) �−→ u(m, t),

with B(m0, δ) = {m ∈ Lq(∂Ω) : ‖m−m0‖Lq(∂Ω) < δ}, such that,

i) (λ, v) = (λ(m, t), h∗−t(u(m, t))) constitutes an eigenpair to (5.6)
for all m ∈ B(m0, δ), |t| < ε0 satisfying

(5.7)

∫
∂Ω

m(·, t)v2 = 1.

Moreover,

(λ(m, t), h∗−t(u(m, t))) = (λ1(0),Φ1(0)),

at m = m0, t = 0, where (λ1(0),Φ1(0)) stands for the principal
normalized eigenpair to (1.1).

ii) If (λ, v) is an eigenpair to (5.6) with

|λ− λ1(0)| < η ‖v − Φ1(0)‖H1(Ω) < η,

and v satisfies (5.7) then, necessarily

(λ, v) = (λ(m, t), v(m, t)),

for a certain (m, t) ∈ B(m0, δ) × (−ε0, ε0) where v(m, t) =
h∗−t(u(m, t)).
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iii) If λ′1(t) stands for the derivative of the main eigenvalue λ =
λ1(t) to (4.1) then

(5.8) λ′1(0) = lim
(m,t)→(m0,0)

∂λ

∂t
(m, t).

Proof. Following the program of the proof of Theorem 4.1 (the notation
used there is kept) we set Z = Lq(∂Ω) with q > N − 1, and consider
the mapping

F : X × Z × R× (−ε0, ε0) −→ Y × R
(u,m, λ, t) �−→ (F1(u,m, λ, t),F2(u,m, λ, t))

where

〈F1(u,m, λ, t), ψ〉X,Y =∫
Ω

[
A(t, x)(∇u,∇ψ) + h∗t (q)(x)uψ

]
C(t, x) dx

− λ

∫
∂Ω

muψD(t, x) dσ

for ψ ∈ X and

(5.9) F2(u,m, λ, t) =
1

2

(∫
∂Ω

mu2D(t, x) dσ − 1

)
.

Then, the eigenvalues λ of (4.1) with associated eigenfunctions v ∈
X, normalized so that

∫
∂Ω
mv2 = 1, are characterized as the zeros

(u,m, λ, t) ∈ X × Z × R× R of the equation

(5.10) F(u,m, λ, t) = 0,

where u = h∗t (v).
We now observe that the inclusion H1(Ω) ↪→ Lp(∂Ω) is continuous

for all p ≥ 1 if N = 2, and for 1 ≤ p ≤ p∗∂Ω, p∗∂Ω = 2(N − 1)/(N − 2),
if N ≥ 3 ([1]). Thus, mapping F = F(u,m, λ, t) is linear continuous
with respect to m ∈ Z provided q > N − 1.

As shown in Theorem 4.1, Implicit Function Theorem can be em-
ployed to solve with uniqueness equation (5.10) near (u,m, λ, t) =
(Φ1(0), m0, λ1(0), 0). This yields assertions i), ii), while relation (5.8)

is nothing else but the continuity of
∂λ

∂t
(m, t) at (m, t) = (m0, 0). �

Proof of Theorem 5.6. We consider the regularizing sequence mε in-
troduced in Lemma 5.5. If (λ, u) = (λ1,ε,Φ1,ε) stands for the principal
normalized eigenpair to (5.4), we claim that λ1,ε → λ1(0) and that
Φ1,ε → Φ1(0) in H1(Ω). Thus, in view of ii) of Lemma 5.8 we conclude
that

λ(mε, 0) = λ1,ε,
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for ε small. Since (Lemma 5.3)

∂λ

∂t
(mε, 0) = −λ1,ε

∫
∂Ω

mε div(Φ2
1,εV ) dσ,

then (5.5) follows from (5.8) by setting m = mε, t = 0 and making
ε→ 0.

For the sake of completeness we next give a direct proof of the claim.
Assuming that both λ1,ε and ‖Φ1,ε‖H1(Ω) are bounded we achieve the
assertion. In fact, taking εn → 0, setting un = Φ1,εn , λn = λ1,εn,
mn = mεn and passing through a subsequence we see that un ⇀ u0

weakly in H1(Ω), un → u0 strongly in L2(Ω) and strongly in Lp(∂Ω)
with 2 < p < p∗∂Ω, the latter fact coming from the compactness of
the embedding H1(Ω) ↪→ Lp(∂Ω) for all p < p∗∂Ω ([14]). In particular,
for each ϕ ∈ H1(Ω) it follows that unϕ → u0ϕ in Lp/2(∂Ω) and thus
mnunϕ→ m0u0ϕ in L1(∂Ω) since mn → m0 in Lq(∂Ω) with q ≥ (p/2)′

(notice that (p∗∂Ω/2)′ = N − 1).
Thus passing to limits in∫

Ω

∇un∇ϕ+ qunϕ = λn

∫
∂Ω

mnunϕ,

we arrive to ∫
Ω

∇u0∇ϕ+ qu0ϕ = λ′
∫
∂Ω

m0u0ϕ.

with λ′ a limit point of λn. Since u0 ≥ 0,
∫
∂Ω
m0u

2
0 = 1 then (λ′, u0) =

(λ1(0),Φ1(0)). This shows that λ1,ε → λ1(0) and that the whole Φ1,ε ⇀
Φ1(0) weakly in H1(Ω). The convergence in H1(Ω) follows from the
fact that Φ1,ε → Φ1(0) in L2(Ω) together with∫

Ω

|∇Φ1(0)|2 = λ1(0) −
∫

Ω

qΦ1(0)2 = lim
ε→0

∫
Ω

|∇Φ1,ε|2.

We now show the boundedness of λ1,ε. First we have

λ1,ε

∫
∂Ω

mεΦ
2
1 ≤

∫
Ω

|∇Φ1|2 + qΦ2
1 = λ1(0),

and so limλ1,ε ≤ λ1(0). Second, λ1,ε is bounded below, otherwise
λn = λ1,εn → −∞ with εn → 0. Using the previous notation and
putting un = |λn|1/2vn we get∫

Ω

|∇vn|2 + qv2
n = −1.

If ‖vn‖H1(Ω) is bounded, vn ⇀ v0 weakly in H1(Ω) with v0 = 0 on Γ
and ∫

Ω

|∇v0|2 + qv2
0 ≤ −1.
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This contradicts (2.3) and so
∫

Ω
v2
n → ∞. In this case, setting vn =

‖vn‖L2(Ω)wn we find∫
Ω

|∇wn|2 + qw2
n = − 1

‖vn‖2
L2(Ω)

.

By extracting a subsequence wn′ weakly converging to w0 in H1(Ω) we
get w0 �= 0 with ∫

Ω

|∇w0|2 + qw2
0 ≤ 0.

This contradicts again (2.3). Therefore, λ1,ε keeps bounded.
Finally, a similar argument proves the boundedness of Φ1,ε in H1(Ω).

�
Next statement provide the last step to show Theorem 5.1. This is

just the unique part of the proof where the extra smoothness of q and
Ω is involved.

Theorem 5.9. Suppose the assumptions of Theorem 5.1 hold and let
Φ1,ε be the principal positive eigenfunction to (5.4) normalized accord-
ing to

∫
∂Ω
mεΦ

2
1,ε = 1. Then,

Φ1,ε, Φ1(0) ∈ H1(∂Ω),

and moreover

(5.11) Φ1,ε → Φ1(0) in H1(∂Ω).

In order to proceed further we first need to introduce some definitions
taken from [15]. Schwartz’s notation ∂α for derivatives of order |α| =
α1 + · · ·+ αN , α ∈ {Z+}N , Z+ = N ∪ {0}, is followed below.

Definition 5.10 ([15], p. 183). For s = 0, 1, ..., let

Ξs(Ω) = {u ∈ L2(Ω) : d̄|α|∂αu ∈ L2(Ω) for |α| ≤ s},
with norm

‖u‖Ξs(Ω) =
∑
|α|≤s

‖d̄|α|∂αu‖L2(Ω),

where d̄ = d̄(x) ∈ C∞(Ω̄) is a positive extension from a neighborhood
of ∂Ω to the whole of Ω of the distance function d(x, ∂Ω).

The spaces Ξs(Ω) with real s > 0 are defined by interpolation and
then, to s < 0 by duality.

Next definition involves uniformly elliptic operators. A differential
operator A(x, ∂) =

∑
|α|≤2m aα(x)∂

α of order 2m and coefficients aα ∈
C∞(Ω) is uniformly elliptic in Ω if a certain positive constant c > 0
exists such that ∑

|α|=2m

aα(x)ξ
α ≥ c|ξ|2m

for all ξ ∈ RN , x ∈ Ω.
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Next definition is stated in [15] in the context of the broader class of
properly elliptic operators.

Definition 5.11 ([15], p. 199). Let A(x, ∂) be uniformly elliptic in Ω
with order 2m. For 0 < s < 2m we define

Ds
A(Ω) = {u ∈ Hs(Ω) : Au ∈ Ξs−2m(Ω)},

with norm
‖u‖2

Ds
A(Ω) = ‖u‖2

Hs(Ω) + ‖Au‖2
Ξs−2m(Ω),

where Hs(Ω) stands for the fractionary Sobolev space W s,2(Ω).

The following results are particular cases of Theorems 7.3 and 7.4 of
Chapter 2 in [15].

Theorem 5.12. Suppose the domain Ω and the potential q are of class
C∞ and 0 < s < 2. Then, the trace operator extends to a continuous
operator from Ds

A(Ω) to Hs−1/2(∂Ω).

Theorem 5.13. Suppose the domain Ω and the potential q are of class
C∞ and that none of the Neumann eigenvalues of −Δ+ q in Ω is zero.

Then, the operator u �→ ((−Δ + q)u,
∂u

∂ν
) is a topological isomorphism

from Ds
A(Ω) into Ξs−2(Ω) ×Hs−3/2(∂Ω), for any 0 < s < 2.

Remark 5.14.
a) Conclusion of Theorem 5.13 still holds true if some eigenvalue of
−Δ+q vanishes. In this case such operator still defines an isomorphism
if one suitably reduces both its domain and range (see [15]). This fact
can be employed to remove the hypothesis on the Neumann invertibility
of −Δ + q from the statement of Theorem 5.1.

b) For s ≥ 1, ((−Δ + q)u,
∂u

∂ν
) = (f, g) should be understood in the

sense that u ∈ Hs(Ω) defines a weak solution to the corresponding non
homogeneous Neumann problem: −Δu + qu = f in Ω, ∂u/∂ν = g on
∂Ω.

Proof of Theorem 5.9. Choose s = 3
2

in Theorems 5.12 and 5.13 and
set uε = Φ1,ε, u0 = Φ1(0) (recall that m0 = χΓ(x)). Since λ1,εmεuε,

λ1(0)m0u0 ∈ L2(∂Ω), there exist ũε, ũ0 in D
3/2
A (Ω) such that

(Aũε,
∂ũε
∂ν

) = (0, λ1,εmεuε), (Aũ0,
∂ũ0

∂ν
) = (0, λ0m0u0).

On the other hand ũε, ũ0 are weak solutions in H1(Ω) to the cor-
responding nonhomogeneous Neumann problems. Thus ũε = uε and
ũ0 = u0.

In addition, uε → u0 in H1(Ω) (Theorem 5.6) and so uε → u0 in
L2(∂Ω) (indeed, in a more regular subspace). Thus, certain nonneg-
ative h ∈ L2(∂Ω) exists so that |uε| ≤ h a. e. on ∂Ω ([8]). In view
of Lemma 5.5, |λ1,εmεuε| ≤ Ch a. e. on ∂Ω for a certain constant
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C > 0. Dominated convergence then yields that the whole family
λ1,εmεuε converges to λ1(0)m0u0 in L2(∂Ω). Therefore, Theorem 5.13
implies

uε → u0 in D
3/2
A (Ω),

and so, convergence assertion (5.11) in Theorem 5.9 directly follows
from Theorem 5.12.

�

We can already show the main result of this section.

Proof of Theorem 5.1. Relation (5.5) in Theorem 5.6 says

λ′1(0) = −λ1(0) lim
ε→0

∫
∂Ω

mε div(Φ2
1,εV ) dσ.

Since Φ1,ε → Φ1(0) in H1(∂Ω) a nonnegative function h1 ∈ L1(∂Ω)
exists such that |Φ1,ε| ≤ h1 and |Φ1,ε∂iΦ1,ε| ≤ h1 a. e. on ∂Ω for 1 ≤ i ≤
N . Thus, boundedness of mε in L∞(∂Ω) (Lemma 5.5) and dominated
convergence permit us to introduce the limit into the integral to achieve

λ′1(0) = −λ1(0)

∫
∂Ω

m0 div(Φ2
1,εV ) dσ = −λ1(0)

∫
Γ

div(Φ1(0)2V ) dσ.

The last integrand lies in L1(∂Ω). Therefore, thanks to the differentia-
bility of Φ1 on ∂Ω \ ∂Γ (Theorem 2.1 iv)) we have∫

Γ

div(Φ1(0)2V ) dσ = lim
δ→0+

∫
Γ−

δ

div(Φ1(0)2V ) dσ

= lim
δ→0+

∫
∂Γ−

δ

Φ1(0)2〈V, ν∂Γ−
δ
〉 dσΓ−

δ
=

∫
∂Γ

Φ1(0)2〈V, ν∂Γ〉 dσΓ,

with Γ−
δ = {x ∈ Γ : dist∂Ω(x, ∂Γ) > δ}, and where to pass to the limit

with δ the fact that Φ1(0) ∈ Cβ(Ω) has been employed.
This finishes the proof. �
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introduction. Monograf́ıas de Matemática # 42, IMPA, Rı́o de Janeiro, 1986.

[8] H. Brezis, Analyse fonctionnelle. Masson, Paris, 1983.
[9] S. N. Chow, J. K. Hale, Methods of bifurcation theory. Springer-Verlag,

New York, 1982.
[10] R. Dillon, H. Othmer, A mathematical model for outgrowth and spatial

patterning of the vertebrate limb bud, J. Theor. Biol. 197, 295-330, (1999).
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